

3.0V, SOTINY[™] 0.4Ω Single-Supply SPDT Analog Switch

Features

• Low On-Resistance: 0.4Ω (+2.7V Supply)

• R_{ON} Matching: 0.1Ω Max.at 25 °C

• R_{ON} Flatness: 0.1Ω Max. (+3.0V Supply) at 25 °C

• Low 2nA Input Leakage at 25 °C

• +1.5V to +3.6V Single-Supply Operation

• Fast Switching Time: 30ns Max.

• Make-Before-Break Switching Guaranteed

• -41dB Off-Isolation at 100KHz

• TTL/CMOS Logic Compatible

• Low Power Consumption: 5µW

• Packages (Pb-free avaliable):

- 6-pin Small Compact SOT-23

-6-pin Ultra Compact Thin Dual in-line Flat No Lead (TDFN)

Applications

• Communication Circuits

· Cellular Phones

Audio and Video Signal Routing

• Portable Battery-Operated Equipment

• Data Acquisition Systems

• Computer Peripherals

• Telecommunications

• Relay Replacement

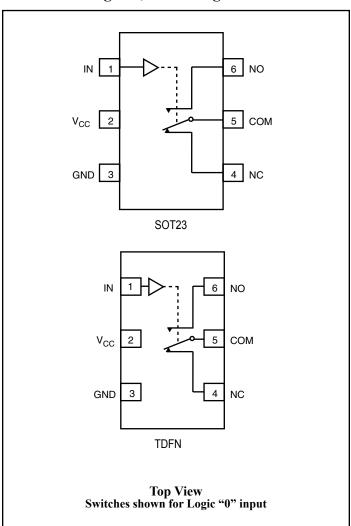
· Wireless Terminals and Peripherals

· Hard Drives

• Modems

Truth Table

Logic	NC	NO
0	ON	OFF
1	OFF	ON


Description

The PI3A4625 is a single-pole, double-throw (SPDT) analog switch. Improved specifications include a low On-Resistance of 0.4Ω , and fast switching times (30ns Max.) with 3.0V supply operation.

Specifications are given for 1.8V, 2.5V and 3.3V power supply operation. Operating voltage range is +1.5V to +3.6V.

To minimize PC board area use, the device is available in the ultra compact TDFN, and the small compact SOT-23 6-pin packages. Operating temperature range is -40° C to 85° C.

Functional Diagram, Pin Configuration

PS8713 12/15/03

1

Absolute Maximum Ratings

Voltages Referenced to GND V _{CC}	0.5V to +3.6V
V _{IN} , V _{COM} , V _{NC} , V _{NO} (Note 1) or 30mA, whichever occurs first	
Current (any terminal)	±200mA
Peak Current, COM, NO, NC (Pulsed at 1ms, 10% duty cycle)	±400mA

Thermal Information

Notes:

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +3.3V Supply

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range (3)	Vanalog		Full	0		V _{CC}	V
O D : 1	D		25		0.4	0.5	
On-Resistance	R _{ON}	$V_{CC} = 2.7V, I_{COM} = 100mA,$	Full			0.55	
On-Resistance Match	ΔR_{ON}	25			0.1		
Between Channels ⁽⁴⁾			Full			0.1	Ω
On-Resistance Flat-	_	$V_{CC} = 2.7V, I_{COM} = 100 \text{mA},$	25			0.1	
ness ⁽⁵⁾	R _{FLAT(ON)}	V_{NO} or $V_{NC} = 0.8V$, 2.0V	Full			0.1	
NO or NC Off Leakage	I _{NO(OFF)} or	$V_{CC} = 3.3V, V_{COM} = 0V,$	25	-1		1	
Current ⁽⁶⁾	I _{NC(OFF)}	V_{NO} or $V_{NC} = +2.0V$	Full	-10		10	A
COM On Leakage Cur-	age Cur-	$V_{CC} = 3.3 \text{V}, V_{COM} = +2.0 \text{V},$	25	-2		2	nA
rent ⁽⁶⁾	ICOM(ON)	V_{NO} or $V_{NC} = +2.0V$	Full	-20		20	

2

^{1.} Signals on NC, NO, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Electrical Specifications - Single +3.3V Supply (continued)

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min ^{.(1)}	Typ.(2)	Max. ⁽¹⁾	Units
Logic Input							
Input High Voltage	V_{IH}	Guaranteed Logic High Level	Full	1.4			V
Input Low Voltage	$V_{ m IL}$	Guaranteed Logic LowLevel				0.5	· v
Input Current with Voltage High	I _{INH}	$V_{IN} = 1.4V$, all others = 0.5V		-1		1	4
Input Current with Voltage Low	I _{INL}	$V_{\rm IN}$ = 0.5V, all others = 1.4V		-1		1	μA
Dynamic							
Turn-On-Time	_		25			10	
Turn-On-Time	t _{ON}	$V_{CC} = 3.3 \text{V}, V_{NO} \text{ or } V_{NC} = 2.0 \text{V},$	Full			20	ns
Turn-Off-Time	town	Figure 1	25			15	
Turn-On-Time	t _{OFF}		Full			30	
Make-Before-Break	T _{BBM}	Figure 3	25	1		20	
Wake-Before-Break	1 BBM		Full	1		25	
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{nF}, V_{GEN} = 0 \text{V}, R_{GEN} = 0 \Omega,$ Figure 2			40		рC
Off Isolation ⁽⁷⁾	O _{IRR}	$R_L = 50\Omega$, $f = 100$ KHz, Figure 3	•		-27		dB
CrossTalk ⁽⁸⁾	X _{TALK}	$R_L = 50\Omega$, $f = 100$ KHz, Figure 4			-41		uБ
NC or NO Capacitance	C _{NC/NO} (OFF)	C-1MH- Firm 5			75		
COM Off Capacitance	C _{COM(OFF)}	f = 1 MHz, Figure 5			75		pF
COM On Capacitance	C _{COM(ON)}	f = 1 MHz, Figure 6			200		
Supply							
Power-Supply Range	V _{CC}			1.5		3.6	V
Positive Supply Current	I_{CC}	$V_{CC} = 3.6V$, $V_{IN} = 0V$ or V_{CC}	Full			100	nA

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

3

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NC})]$. See Figure 4
- 8. Between any two switches. See Figure 5

Electrical Specifications - Single +2.5V Supply

 $(V_{CC} = +2.5V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V _{CC}	V
On-Resistance	R _{ON}	$V_{CC} = 2.5V, I_{COM} = -8mA, V_{NO}$	25			0.5	
On-Resistance	KON	or $V_{NC} = 1.8V$	Full			0.6	
On-Resistance Match	AD ov		25			0.1	Ω
Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	$V_{CC} = 2.5V$, $I_{COM} = -8mA$, V_{NO} or	Full			0.1	1 22
On-Resistance Flat-	D	$V_{NC} = 0.8V, 1.8V$	25			0.1	
ness ⁽⁵⁾	R _{FLAT(ON)}		Full			0.1	
Dynamic							
Town On Time	t _{ON}	$V_{CC} = 2.5 \text{V}, V_{NO} \text{ or } V_{NC} = 1.8 \text{V},$ Figure 1	25			10	
Turn-On-Time			Full			20	ns
Turn Off Times	_		25			20	
Turn-Off-Time	t _{OFF}		Full			40	
Make- Before-Break	t _{BBM}	Figrue 3	25	1		20	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2	25		40		рC
Logic Input							
Input High Voltage	V _{IH}	Guaranteed Logic High Level	Full	1.4			V
Input Low Voltage	V_{IL}	Guaranteed Logic LowLevel	Full			0.5	
Input High Current	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$	Full	-1		1	
Input Low Current	I_{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μA

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

4

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.

Electrical Specifications - Single +1.8V Supply

 $(V_{CC} = +1.8V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min.(1)	Typ. ⁽²⁾	Max. ⁽¹⁾	Units		
Analog Switch									
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V _{CC}	V		
On-Resistance	R _{ON}	$V_{CC} = 1.8V, I_{COM} = -4mA,$ V_{NO} or $V_{NC} = 1.5V$	25 Full			0.6			
On-Resistance		YNO OZ VINC TIO V	25			0.0			
Match Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	$V_{CC} = 1.8V, I_{COM} = -4mA,$	Full			0.2	Ω		
On-Resistance	R _{FLAT(ON)}	V_{NO} or $V_{NC} = 0.8V$, 1.5V	25			0.9			
Flatness ⁽⁵⁾	TTLAT(ON)		Full			1.2			
Dynamic	Dynamic								
Turn-On-Time	tov		25			15			
Turn-On-Time	t _{ON}	$V_{CC} = 1.8V, V_{NO} \text{ or } V_{NC} = 1.5V,$	Full			30			
Turn-Off-Time	$t_{ m OFF}$	Figure 1	25 Full			20	ns		
Make-Before-Break	t _{BBM}	Figure 3	25	1		15			
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2	25		36		рC		
Logic Input									
Input High Voltage	$V_{ m IH}$	Guaranteed Logic High Level	Full	1.4			V		
Input Low Voltage	$V_{ m IL}$	Guaranteed Logic LowLevel	Full			0.5			
Input High Current	I _{INH}	$V_{IN} = 1.4V$, all others = 0.5V	Full	-1		1			
Input Low Current	I_{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μΑ		

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

5

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.

Test Circuits/Timing Diagrams

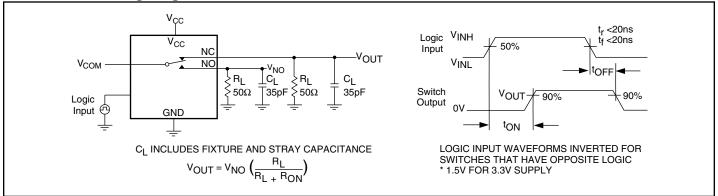


Figure 1. Switching Time

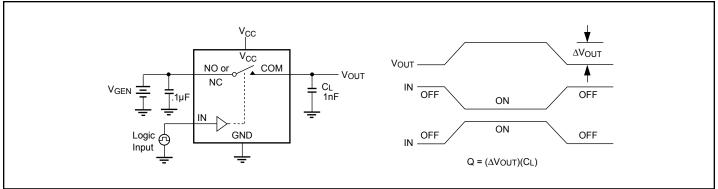


Figure 2. Charge Injection

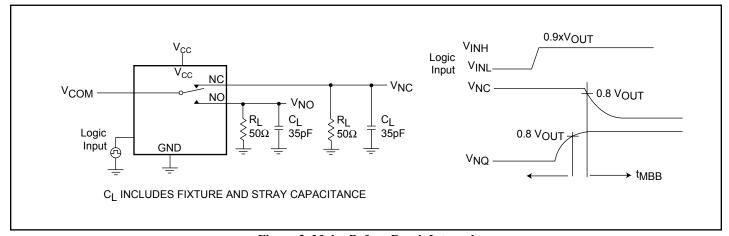


Figure 3. Make-Before-Break Interval

6

Test Circuits/Timing Diagrams (continued)

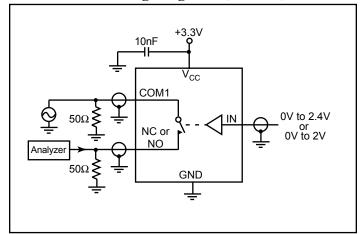


Figure 4. Off Isolation

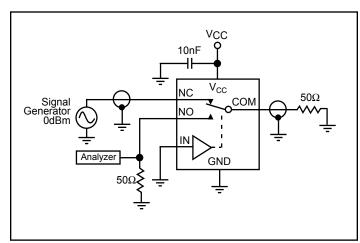


Figure 5. Crosstalk

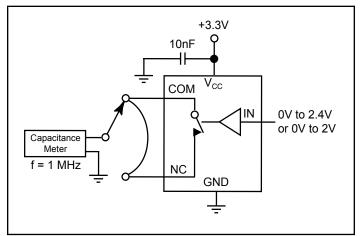
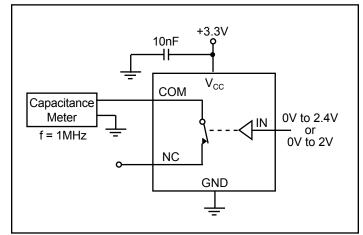
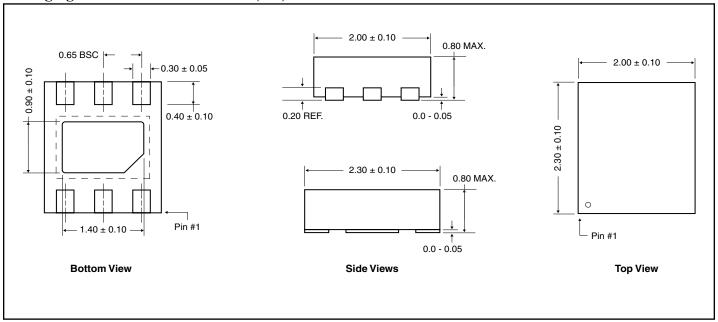
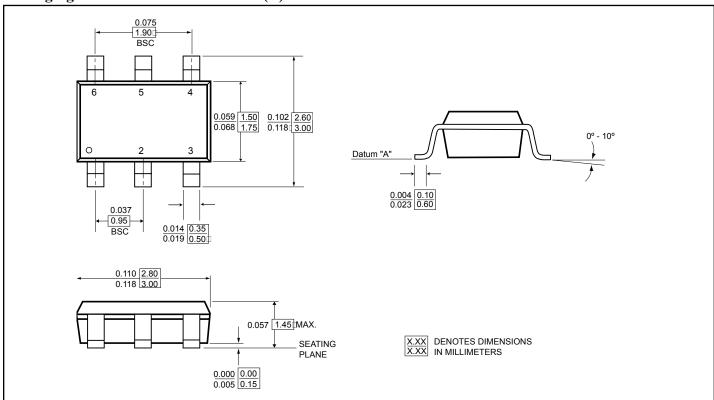


Figure 6. Channel-Off Capacitance




Figure 7. Channel-On Capacitance

PS8713 12/15/03


7

Packaging Mechanical: 6-Pin TDFN (ZC)

Packaging Mechanical: 6-Pin SOT-23 (T)

Ordering Information

Order Code	Package Code	Package Type	Package Top Mark
PI3A4625TX	T	6-pin, Small Compact SOT-23	ZE
PI3A4625TEX	T	Pb-free & Green, 6-pin, Small Compact SOT-23	ZE
PI3A4625ZCEX	ZC	Pb-free & Green, 6-pin, Ultra Compact TDFN	ZE

Notes:

- 1. Thermal characteristics can be found on the company web site at http://www.pericom.com/packaging/
- X = Tape/Reel